Session format:

- 60 minutes: Introduction to modular arithmetic
- 30 minutes: Geometry with paper folding

# 1 Shift ciphers continued

We made the following observations about the working of the shift cipher (on the English alphabet):

- 1. Shifting by t is same as shifting by t 26 or -(26 t)
- 2. Shifting by  $t_1$  and then shifting again by  $t_2$  is same as shifting by  $t_1 + t_2$ . So *layered shifting* or applying multiple shifts provides no advantage.

The language of modular arithmetic provides a better way to express these ideas.

# 2 Modular arithmetic

Start by sorting integers based on the remainder obtained after division by a fixed number as follows:

- 1. Fix a number, say n = 3. What remainders are possible when one divides a number by 3? Observation: When dividing by 3, there are 3 possible remainders, namely 0, 1, and 2.
- 2. Repeat above exercise for n = 4, 5, 6 etc.
- 3. Generalise to other numbers: When dividing by n, there are n possible remainders, namely  $0, 1, 2, \ldots, (n-1)$ .
- 4. Imagine there are n baskets labelled 0, 1, 2, ..., (n-1). Pick any integer, divide it by n and see what remainder is obtained. Then imagine dropping it in the basket labelled by that remainder.

**Terminology:** We will say that two numbers are *congruent modulo* n if they get dropped into the same basket.

#### Examples:

- 1.  $5 \equiv 3 \pmod{2}$
- 2. 12  $\equiv$  7(mod 5)
- 3.  $8 \equiv 15 \pmod{7}$
- 4.  $15 \equiv 27 \pmod{3}$

Now that we have some idea about this sorting, let us introduce the mathematical language used to express this idea and work with it.

**Definition:** Let a, b and n be integers. We say that a is congruent to b modulo n if n divides (b-a), that is (b-a) is a multiple of n.

To avoid writing so many words all the time, we use

Notation:  $a \equiv b \pmod{n}$  to mean *a* is congruent to *b* modulo *n*. We can quickly check how this applies to the earlier examples -

#### **Examples:**

- 1.  $5 \equiv 3 \pmod{2}$  since 2 divides (5-3)
- 2.  $12 \equiv 7 \pmod{5}$  since 5 divides (12 7)
- 3.  $8 \equiv 15 \pmod{7}$  since 7 divides (15 8)
- 4.  $15 \equiv 27 \pmod{3}$  since 3 divides (27 15)

It is not too difficult to see why this definition works, that is why a and b belong to the same basket (modulo n) if n divides (b-a). Here is a proof:

Recall the division algorithm: given any two integers m and n, we can find (quotient) q and (remainder) r such that m = nq + r

and the remainder lies between 0 and (n-1) (that is,  $0 \le r < n$ .)

Applying the division algorithm to the pairs a, n and b, n tells us that we can find numbers  $q_1, q_2$  and  $r_1, r_2$  satisfying

$$a = nq_1 + r_1, 0 \le r_1 < n$$
  
 $b = nq_2 + r_2, 0 \le r_1 < n.$ 

Then

$$b-a = nq_2 + r_2 - (nq_1 + r_1)$$
  
=  $n(q_2 - q_1) + r_2 - r_1$ 

If a and b leave the same remainder when divided by n, then  $r_1 = r_2$ , so  $r_2 - r_1 = 0$ , which gives  $b - a = n(q_2 - q_1)$ . So (b - a) is a multiple of n.

Conversely, if n divides (b - a), then  $r_2 - r_1$  must be zero, i.e.  $r_1 = r_2$  which means a and b belong to the same basket (labelled by  $r_1$  or  $r_2$ ).

## **3** Folding $30^{\circ}$ and $60^{\circ}$ angles in a square

First we will see how to fold these angles at a corner of the square. Notice that you already have a  $90^{\circ}$  at the corner, and folding a square along any one of its diagonal gives a  $45^{\circ}$  angle.

Try the construction shown in the following image:



### 4 Food for thought

- 1. For each of the following statements, choose the correct option, and state the reason for your choice:
  - (a)  $18 \equiv 28 \pmod{12} \cdots$  True/False. This is because 12 does not divide (28 18) = 10.
  - (b)  $12 \equiv 7 \pmod{5} \cdots$  True/False. This is because \_\_\_\_\_
  - (c)  $8 \equiv 15 \pmod{7} \cdots$  True/False. This is because
  - (d)  $15 \equiv 27 \pmod{3} \cdots \cdots$  True/False. This is because
- 2. Prove that the angle obtained using the construction shown earlier is a 30° angle. You can use the following steps as guideline for your proof:
  - Notice that after making the fold the paper looks as follows:



You want to show that angle PBR equals  $30^{\circ}$ .

• Drop a perpendicular PQ to segment AB. Do you see a pair of similar triangles that you could use to prove the required statement?